Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.589
Filtrar
2.
Kidney Int ; 105(5): 923-924, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642989

RESUMO

Collapsing glomerulopathy (CG) is an aggressive variant of focal and segmental glomerulosclerosis. Understanding the diverse mechanisms that can drive CG promises to uncover new therapeutic strategies. In this issue, Duret et al. identify WIP1 phosphatase as a therapeutic target for CG. Using genetic ablation and pharmacologic inhibition, they show that blockade of WIP1 activity is protective in 2 different mouse models of CG. This study highlights the complex interplay of glomerular signaling pathways in CG and offers hope for targeted therapies.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefropatias , Camundongos , Animais , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomérulos Renais , Nefropatias/tratamento farmacológico
3.
Commun Biol ; 7(1): 446, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605154

RESUMO

Podocyte detachment due to mechanical stress is a common issue in hypertension-induced kidney disease. This study highlights the role of zyxin for podocyte stability and function. We have found that zyxin is significantly up-regulated in podocytes after mechanical stretch and relocalizes from focal adhesions to actin filaments. In zyxin knockout podocytes, we found that the loss of zyxin reduced the expression of vinculin and VASP as well as the expression of matrix proteins, such as fibronectin. This suggests that zyxin is a central player in the translation of mechanical forces in podocytes. In vivo, zyxin is highly up-regulated in patients suffering from diabetic nephropathy and in hypertensive DOCA-salt treated mice. Furthermore, zyxin loss in mice resulted in proteinuria and effacement of podocyte foot processes that was measured by super resolution microscopy. This highlights the essential role of zyxin for podocyte maintenance in vitro and in vivo, especially under mechanical stretch.


Assuntos
Hipertensão Renal , Nefrite , Podócitos , Humanos , Camundongos , Animais , Zixina/genética , Zixina/metabolismo , Podócitos/metabolismo , Citoesqueleto de Actina/metabolismo , Glomérulos Renais , Adesões Focais/metabolismo
4.
Bratisl Lek Listy ; 125(5): 275-280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38624051

RESUMO

C4d, a split product of C4 activation in classical and lectin pathways of the complement system activation, has been regarded as a footprint of tissue damage in antibody-mediated rejection in transplantology. The introduction of C4d staining into daily clinical practice aroused an ever-increasing interest in the role of antibody-mediated mechanisms in kidney allograft rejection. However, this marker of complement activation is also important in other various kidney glomerular pathologies such as immunoglobulin A nephropathy, membranoproliferative glomerulonephritis, lupus nephritis, and others. In routine histopathological practice, C4d staining can be done by two histological methods, specifically by immunofluorescence on frozen tissue using monoclonal antibody to C4d (with the downside of unsteady availability of frozen tissue) or by immunohistochemistry using C4d antibodies on formalin-fixed and paraffin-embedded renal tissue. The aim of this narrative review is to summarize recent knowledge about the complement fragment C4d and its significance in different kidney pathologies, focusing on its immunohistochemical detection in renal tissue biopsies. We have supplemented this review with our experience with our proprietary methodology of preparation and practical use of antibodies such as anti-C4d, on a small national level. Immunohistochemical staining for C4d has revolutionized the field of renal histopathology. Despite being a simple diagnostic test, its utility can be of utmost importance, especially in a resource-poor setting where immunofluorescence and frozen tissue may not be available (Fig. 2, Ref. 53). Keywords: C4d deposition, immunohistochemistry, kidney glomerular diseases, kidney transplant, renal tubular damage.


Assuntos
Transplante de Rim , Glomérulos Renais/patologia , Rim/metabolismo , Anticorpos Monoclonais , Fragmentos de Peptídeos , Ativação do Complemento , Biópsia
5.
BMC Nephrol ; 25(1): 145, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658875

RESUMO

BACKGROUND: There is a clear need to refine the histological assessment in IgA Nephropathy (IgAN). We sought to investigate the clinical significance of the light microscopy (LM) pattern of glomerular injury and of the intensity of mesangial C3 staining in IgAN. METHODS: We conducted a retrospective, observational study that included all patients with biopsy-proven primary IgAN that had at least 12 months of follow-up. The LM pattern of glomerular injury was reevaluated based on a modified HAAS classification. Mesangial C3 deposition by immunofluorescence (IF) staining was scored semi-quantitatively. The study primary composite endpoint was defined as doubling of serum creatinine or ESRD (dialysis, renal transplant or eGFR < 15 ml/min). The secondary study endpoint was eGFR decline per year. RESULTS: This cohort included 214 patients with IgAN (mean age, 41.4 ± 12.6 years), with a mean eGFR and median 24-h proteinuria of 55.2 ± 31.5 ml/min/1.73m2 and 1.5 g/day (IQR:0.8-3.25), respectively. The most frequent LM pattern was the mesangioproliferative (37.4%), followed by the sclerotic (22.5%) and proliferative/necrotizing patterns (21.4%). Regarding the IF findings, mild-moderate and intense mesangial C3 staining was present in 30.6% and 61.1% of patients, respectively. Those with sclerosing and crescentic patterns had the worst renal survival (5-year renal survival of 48.8% and 42.9%) and the highest rate of eGFR change/year (-2.32 ml/min/y and - 2.16 ml/min/y, respectively) compared to those with other glomerular patterns of injury. In addition, those with intense C3 staining reached the composite endpoint more frequently compared to those without intense C3 staining (35.5% vs. 21.4%, p = 0.04). After multivariate adjustment, patients with crescentic and sclerosing patterns had a 3.6-fold and 2.1-fold higher risk for the composite endpoint compared to those with mesangioproliferative pattern, while an intense mesangial C3 deposition being also associated with a worse renal outcome (HR, 3.33; 95%CI, 1.21-9.2). CONCLUSIONS: We have shown that the LM pattern of glomerular injury and the intensity of mesangial C3 deposition might stratify more accurately the renal outcome in patients with IgAN.


Assuntos
Complemento C3 , Mesângio Glomerular , Glomerulonefrite por IGA , Glomérulos Renais , Humanos , Glomerulonefrite por IGA/patologia , Masculino , Feminino , Adulto , Estudos Retrospectivos , Pessoa de Meia-Idade , Mesângio Glomerular/patologia , Mesângio Glomerular/metabolismo , Complemento C3/metabolismo , Complemento C3/análise , Glomérulos Renais/patologia , Taxa de Filtração Glomerular , Falência Renal Crônica
6.
P R Health Sci J ; 43(1): 39-45, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512760

RESUMO

OBJECTIVE: Hypertension is one of the cardiovascular diseases that causes the most mortality, and 95% of the causes are unknown. The aim of the study was to examine the possible correlation of nesfatin-1 levels, adropin levels, claudin-2 immunoreactivity (claudin-2 expression in the renal proximal tubule), and renalase immunoreactivity (renalase expression in the renal proximal tubule) with arterial blood pressure, kidney function, and kidney damage. METHODS: Adult male Sprague Dawley rats were divided into control and hypertension groups (8 per group). Angiotensin II vehicle was given to the control group and angiotensin II (0.7 mg/kg/day) to the hypertension group, both via an osmotic mini pump for 7 days. The animals blood pressures were measured by tail cuff plethysmography on days 1, 3, 5, and 7. On day 7, 24-hour urine, blood, and tissues were collected from the rats. RESULTS: In the hypertension group compared with the control group, there was an increase in systolic blood pressure levels after day 1. While claudin-2 immunoreactivity was reduced in the kidneys, renalase immunoreactivity was increased. There was a decrease in creatinine clearance and an increase in fractional potassium excretion (P < .05). CONCLUSION: Our results showed that claudin-2 and renalase are associated with renal glomerular and tubular dysfunction and may play discrete roles in the pathogenesis of hypertension. We believe that these potential roles warrant further investigation.


Assuntos
Proteínas Sanguíneas , Claudina-2 , Hipertensão , Glomérulos Renais , Túbulos Renais , Monoaminoxidase , Peptídeos , Animais , Masculino , Ratos , Angiotensina II/farmacologia , Pressão Sanguínea , Claudina-2/metabolismo , Hipertensão/fisiopatologia , Monoaminoxidase/metabolismo , Ratos Sprague-Dawley , Proteínas Sanguíneas/metabolismo , Peptídeos/metabolismo , Glomérulos Renais/fisiopatologia , Túbulos Renais/fisiopatologia , Modelos Animais de Doenças
8.
Nat Commun ; 15(1): 1897, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429282

RESUMO

Kidney filtration is ensured by the interaction of podocytes, endothelial and mesangial cells. Immunoglobulin accumulation at the filtration barrier is pathognomonic for glomerular injury. The mechanisms that regulate filter permeability are unknown. Here, we identify a pivotal role for the proteasome in a specific cell type. Combining genetic and inhibitor-based human, pig, mouse, and Drosophila models we demonstrate that the proteasome maintains filtration barrier integrity, with podocytes requiring the constitutive and glomerular endothelial cells the immunoproteasomal activity. Endothelial immunoproteasome deficiency as well as proteasome inhibition disrupt the filtration barrier in mice, resulting in pathologic immunoglobulin deposition. Mechanistically, we observe reduced endocytic activity, which leads to altered membrane recycling and endocytic receptor turnover. This work expands the concept of the (immuno)proteasome as a control protease orchestrating protein degradation and antigen presentation and endocytosis, providing new therapeutic targets to treat disease-associated glomerular protein accumulations.


Assuntos
Nefropatias , Complexo de Endopeptidases do Proteassoma , Camundongos , Humanos , Animais , Suínos , Células Endoteliais , Glomérulos Renais/patologia , Nefropatias/patologia , Endocitose , Imunoglobulinas
9.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542491

RESUMO

Effective management of glomerular kidney disease, one of the main categories of chronic kidney disease (CKD), requires accurate diagnosis, prognosis of progression, assessment of therapeutic efficacy, and, ideally, prediction of drug response. Multiple biomarkers and algorithms for the assessment of specific aspects of glomerular diseases have been reported in the literature. Though, the vast majority of these have not been implemented in clinical practice or are not available on a global scale due to limited access, missing medical infrastructure, or economical as well as political reasons. The aim of this review is to compile all currently available information on the diagnostic, prognostic, and predictive biomarkers currently available for the management of glomerular diseases, and provide guidance on the application of these biomarkers. As a result of the compiled evidence for the different biomarkers available, we present a decision tree for a non-invasive, biomarker-guided diagnostic path. The data currently available demonstrate that for the large majority of patients with glomerular diseases, valid biomarkers are available. However, despite the obvious disadvantages of kidney biopsy, being invasive and not applicable for monitoring, especially in the context of rare CKD etiologies, kidney biopsy still cannot be replaced by non-invasive strategies.


Assuntos
Rim , Insuficiência Renal Crônica , Humanos , Progressão da Doença , Rim/patologia , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/patologia , Glomérulos Renais/patologia , Biomarcadores , Taxa de Filtração Glomerular
10.
Biochem Biophys Res Commun ; 709: 149807, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38552554

RESUMO

Minimal Change Disease (MCD), which is associated with podocyte injury, is the leading cause of nephrotic syndrome in children. A considerable number of patients experience relapses and require prolonged use of prednisone and immunosuppressants. Multi-drug resistance and frequent relapses can lead to disease progression to focal and segmental glomerulosclerosis (FSGS). To identify potential targets for therapy of podocyte injury, we examined microarray data of mRNAs in glomerular samples from both MCD patients and healthy donors, obtained from the GEO database. Differentially expressed genes (DEGs) were used to construct the protein-protein interactions (PPI) network through the application of the search tool for the retrieval of interacting genes (STRING) tool. The most connected genes in the network were ranked using cytoHubba. 16 hub genes were selected and validated by qRT-PCR. RAC2 was identified as a potential therapeutic target for further investigation. By downregulating RAC2, Adriamycin (ADR)-induced human podocytes (HPCs) injury was attenuated. EHT-1864, a small molecule inhibitor that targets the RAC (RAC1, RAC2, RAC3) family, proved to be more effective than RAC2 silencing in reducing HPCs injury. In conclusion, our research suggests that EHT-1864 may be a promising new molecular drug candidate for patients with MCD and FSGS.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrose Lipoide , Podócitos , Criança , Humanos , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomerulosclerose Segmentar e Focal/genética , Doxorrubicina/efeitos adversos , Glomérulos Renais , Recidiva
11.
Comput Biol Med ; 173: 108341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552280

RESUMO

IgA Nephropathy (IgAN) is a disease of the glomeruli that may eventually lead to chronic kidney disease or kidney failure. The signs and symptoms of IgAN nephropathy are usually not specific enough and are similar to those of other glomerular or inflammatory diseases. This makes a correct diagnosis more difficult. This study collected data from a sample of adult patients diagnosed with primary IgAN at the First Affiliated Hospital of Wenzhou Medical University, with proteinuria ≥1 g/d at the time of diagnosis. Based on these samples, we propose a machine learning framework based on weIghted meaN oF vectOrs (INFO). An enhanced COINFO algorithm is proposed by merging INFO, Cauchy Mutation (CM) and Oppositional-based Learning (OBL) strategies. At the same time, COINFO and Support Vector Machine (SVM) were integrated to construct the BCOINFO-SVM framework for IgAN diagnosis and prediction. Initially, the proposed enhanced COINFO is evaluated using the IEEE CEC2017 benchmark problems, with the outcomes demonstrating its efficient optimization capability and accuracy in convergence. Furthermore, the feature selection capability of the proposed method is verified on the public medical datasets. Finally, the auxiliary diagnostic experiment was carried out through IgAN real sample data. The results demonstrate that the proposed BCOINFO-SVM can screen out essential features such as High-Density Lipoprotein (HDL), Uric Acid (UA), Cardiovascular Disease (CVD), Hypertension and Diabetes. Simultaneously, the BCOINFO-SVM model achieves an accuracy of 98.56%, with sensitivity at 96.08% and specificity at 97.73%, making it a potential auxiliary diagnostic model for IgAN.


Assuntos
Glomerulonefrite por IGA , Hipertensão , Adulto , Humanos , Glomerulonefrite por IGA/diagnóstico , Proteinúria/diagnóstico , Glomérulos Renais , Máquina de Vetores de Suporte
12.
Comput Biol Med ; 173: 108369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552283

RESUMO

BACKGROUND: Glomerular lesions reflect the onset and progression of renal disease. Pathological diagnoses are widely regarded as the definitive method for recognizing these lesions, as the deviations in histopathological structures closely correlate with impairments in renal function. METHODS: Deep learning plays a crucial role in streamlining the laborious, challenging, and subjective task of recognizing glomerular lesions by pathologists. However, the current methods treat pathology images as data in regular Euclidean space, limiting their ability to efficiently represent the complex local features and global connections. In response to this challenge, this paper proposes a graph neural network (GNN) that utilizes global attention pooling (GAP) to more effectively extract high-level semantic features from glomerular images. The model incorporates Bayesian collaborative learning (BCL), enhancing node feature fine-tuning and fusion during training. In addition, this paper adds a soft classification head to mitigate the semantic ambiguity associated with a purely hard classification. RESULTS: This paper conducted extensive experiments on four glomerular datasets, comprising a total of 491 whole slide images (WSIs) and 9030 images. The results demonstrate that the proposed model achieves impressive F1 scores of 81.37%, 90.12%, 87.72%, and 98.68% on four private datasets for glomerular lesion recognition. These scores surpass the performance of the other models used for comparison. Furthermore, this paper employed a publicly available BReAst Carcinoma Subtyping (BRACS) dataset with an 85.61% F1 score to further prove the superiority of the proposed model. CONCLUSION: The proposed model not only facilitates precise recognition of glomerular lesions but also serves as a potent tool for diagnosing kidney diseases effectively. Furthermore, the framework and training methodology of the GNN can be adeptly applied to address various pathology image classification challenges.


Assuntos
Práticas Interdisciplinares , Nefropatias , Humanos , Teorema de Bayes , Nefropatias/diagnóstico por imagem , Glomérulos Renais/diagnóstico por imagem , Redes Neurais de Computação
13.
Kidney Int ; 105(5): 1077-1087, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447879

RESUMO

C3 glomerulopathy (C3G) is a rare disease resulting from dysregulation of the alternative pathway of complement. C3G includes C3 glomerulonephritis (C3GN) and dense deposit disease (DDD), both of which are characterized by bright glomerular C3 staining on immunofluorescence studies. However, on electron microscopy (EM), DDD is characterized by dense osmiophilic mesangial and intramembranous deposits along the glomerular basement membranes (GBM), while the deposits of C3GN are not dense. Why the deposits appear dense in DDD and not in C3GN is not known. We performed laser microdissection (LCM) of glomeruli followed by mass spectrometry (MS) in 12 cases each of DDD, C3GN, and pretransplant kidney control biopsies. LCM/MS showed marked accumulation of complement proteins C3, C5, C6, C7, C8, C9 and complement regulating proteins CFHR5, CFHR1, and CFH in C3GN and DDD compared to controls. C3, CFH and CFHR proteins were comparable in C3GN and DDD. Yet, there were significant differences. First, there was a six-to-nine-fold increase of C5-9 in DDD compared to C3GN. Secondly, an unexpected finding was a nine-fold increase in apolipoprotein E (ApoE) in DDD compared to C3GN. Most importantly, immunohistochemical and confocal staining for ApoE mirrored the dense deposit staining in the GBM in DDD but not in C3GN or control cases. Validation studies using 31 C3G cases confirmed the diagnosis of C3GN and DDD in 80.6 % based on ApoE staining. Overall, there is a higher burden of terminal complement pathway proteins in DDD compared to C3GN. Thus, our study shows that dense deposits in DDD are enriched with ApoE compared to C3GN and control cases. Hence, ApoE staining may be used as an adjunct to EM for the diagnosis of DDD and might be valuable when EM is not available.


Assuntos
Glomerulonefrite Membranoproliferativa , Glomerulonefrite , Humanos , Glomerulonefrite Membranoproliferativa/patologia , Glomerulonefrite/patologia , Glomérulos Renais/patologia , Apolipoproteínas E/genética , Apolipoproteínas
14.
Kidney Int ; 105(5): 935-952, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447880

RESUMO

The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.


Assuntos
Nefropatias , Podócitos , Humanos , Glomérulos Renais , Nefropatias/terapia , Biologia
15.
JCI Insight ; 9(6)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516889

RESUMO

Here, we used digital spatial profiling (DSP) to describe the glomerular transcriptomic signatures that may characterize the complex molecular mechanisms underlying progressive kidney disease in Alport syndrome, focal segmental glomerulosclerosis, and membranous nephropathy. Our results revealed significant transcriptional heterogeneity among diseased glomeruli, and this analysis showed that histologically similar glomeruli manifested different transcriptional profiles. Using glomerular pathology scores to establish an axis of progression, we identified molecular pathways with progressively decreased expression in response to increasing pathology scores, including signal recognition particle-dependent cotranslational protein targeting to membrane and selenocysteine synthesis pathways. We also identified a distinct signature of upregulated and downregulated genes common to all the diseases investigated when compared with nondiseased tissue from nephrectomies. These analyses using DSP at the single-glomerulus level could help to increase insight into the pathophysiology of kidney disease and possibly the identification of biomarkers of disease progression in glomerulopathies.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrite Hereditária , Insuficiência Renal Crônica , Humanos , Transcriptoma , Glomérulos Renais/patologia , Glomerulosclerose Segmentar e Focal/patologia , Nefrite Hereditária/patologia , Insuficiência Renal Crônica/metabolismo
16.
Kidney Int ; 105(4): 659-661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519229

RESUMO

Advancements in glomerular transcriptomics offer a promising avenue toward precision medicine in IgA nephropathy. Traditional prognostic biomarkers, including proteinuria, blood pressure, and histomorphometry, fall short at capturing the complexity of IgA nephropathy and can only crudely guide therapeutic decisions. This issue needs to be addressed urgently as pathway-specific treatments become available. Glomerular transcriptomics, although technically challenging, offers an opportunity to refine prognostic precision and identify therapeutic targets, even when apparent risk of disease progression is low.


Assuntos
Glomerulonefrite por IGA , Humanos , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/terapia , Medicina de Precisão , Glomérulos Renais , Prognóstico , Progressão da Doença , Proteinúria
17.
Kidney Int ; 105(4): 671-673, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519234

RESUMO

Rates of chronic kidney disease of unknown etiology are high in Aguascalientes, Mexico. Kidneys of adolescents are small by ultrasonography, compatible with oligonephronia, whereas proteinuria and higher estimated glomerular filtration rates and blood pressures among those with relatively higher kidney volumes probably flag relatively greater degrees of compensatory hypertrophy. Glomerulomegaly and podocytopathy, and later segmental glomerulosclerosis in biopsies, suggest a cascade driven by nephron deficiency. Better measures of glomerular number and volume should improve understanding, facilitate risk assessment, and guide interventions.


Assuntos
Glomerulosclerose Segmentar e Focal , Insuficiência Renal Crônica , Humanos , Adolescente , Glomerulosclerose Segmentar e Focal/patologia , Glomérulos Renais/patologia , Rim/patologia , Néfrons , Taxa de Filtração Glomerular , Insuficiência Renal Crônica/patologia
18.
Anal Chem ; 96(12): 4933-4941, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483253

RESUMO

Nephritis is an inflammatory condition of the glomerulus, and the clinical gold standard for its diagnosis is a kidney biopsy. However, obtaining biopsy results can take several days, which does not meet the requirement of rapid diagnosis, especially for rapidly progressive types. To achieve an effective and noninvasive diagnosis, we propose a nephritis-specific, positive magnetic resonance imaging (MRI) contrast agent based on Gd3+ anchored walking dead macrophage Gd-RAW. Gd-RAW exhibits high selectivity for inflammatory renal parenchyma and provides comparable results to histopathology methods. The Gd-RAW-based MRI contrast agent reduces the diagnostic time of nephritis from 14 days of biopsy to 1 h. Furthermore, in a unilateral nephritis model constructed by increasing the glycerol concentration, the T1WI of renal parenchyma exhibits an increased signal-to-noise ratio, which is crucial for evaluating nephritic severity. This work promotes rapid diagnosis of nephritis and potentially provides sufficient evidence for clinicians to offer timely treatment to patients. The methodology of paramagnetic ion-anchored macrophage corpse also opens up new prospects for designing more specific and biosafe MRI contrast agents.


Assuntos
Meios de Contraste , Nefrite , Humanos , Rim/diagnóstico por imagem , Nefrite/diagnóstico por imagem , Glomérulos Renais , Imageamento por Ressonância Magnética/métodos
19.
Bull Exp Biol Med ; 176(4): 437-441, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491255

RESUMO

Microalbuminuria is an early symptom and prognostic marker of the progression of renal pathology. The analysis of the role of anionic components of the renal glomeruli in the albumin retention and the development of a model of minimal changes in the glomerular filter leading to the appearance of microalbuminuria are relevant. The effect of organic cations D-arginine methyl esters (D-AME) and D-nitroarginine (D-NAME) on the excretion of albumin by the kidneys in rats was studied. D-AME had no effect on urinary albumin excretion in rats. D-NAME caused microalbuminuria, which persisted for more than a day and sharply increased after injection of vasopressin. The number of anionic sites labeled with polyethyleneimine decreased in the structures of the glomerular filter. D-NAME-induced microalbuminuria can later serve as a model for studying nephroprotective or damaging factors.


Assuntos
Nefropatias , Rim , Ratos , Animais , Nitroarginina/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Rim/patologia , Glomérulos Renais , Albuminúria/induzido quimicamente , Nefropatias/patologia , Albuminas/farmacologia
20.
Am J Physiol Renal Physiol ; 326(5): F704-F726, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38482556

RESUMO

PAX2 regulates kidney development, and its expression persists in parietal epithelial cells (PECs), potentially serving as a podocyte reserve. We hypothesized that mice with a Pax2 pathogenic missense variant (Pax2A220G/+) have impaired PEC-mediated podocyte regeneration. Embryonic wild-type mouse kidneys showed overlapping expression of PAX2/Wilms' tumor-1 (WT-1) until PEC and podocyte differentiation, reflecting a close lineage relationship. Embryonic and adult Pax2A220G/+ mice have reduced nephron number but demonstrated no glomerular disease under baseline conditions. Pax2A220G/+ mice compared with wild-type mice were more susceptible to glomerular disease after adriamycin (ADR)-induced podocyte injury, as demonstrated by worsened glomerular scarring, increased podocyte foot process effacement, and podocyte loss. There was a decrease in PAX2-expressing PECs in wild-type mice after adriamycin injury accompanied by the occurrence of PAX2/WT-1-coexpressing glomerular tuft cells. In contrast, Pax2A220G/+ mice showed no changes in the numbers of PAX2-expressing PECs after adriamycin injury, associated with fewer PAX2/WT-1-coexpressing glomerular tuft cells compared with injured wild-type mice. A subset of PAX2-expressing glomerular tuft cells after adriamycin injury was increased in Pax2A220G/+ mice, suggesting a pathological process given the worse outcomes observed in this group. Finally, Pax2A220G/+ mice have increased numbers of glomerular tuft cells expressing Ki-67 and cleaved caspase-3 compared with wild-type mice after adriamycin injury, consistent with maladaptive responses to podocyte loss. Collectively, our results suggest that decreased glomerular numbers in Pax2A220G/+ mice are likely compounded with the inability of their mutated PECs to regenerate podocyte loss, and together these two mechanisms drive the worsened focal segmental glomerular sclerosis phenotype in these mice.NEW & NOTEWORTHY Congenital anomalies of the kidney and urinary tract comprise some of the leading causes of kidney failure in children, but our previous study showed that one of its genetic causes, PAX2, is also associated with adult-onset focal segmental glomerular sclerosis. Using a clinically relevant model, our present study demonstrated that after podocyte injury, parietal epithelial cells expressing PAX2 are deployed into the glomerular tuft to assist in repair in wild-type mice, but this mechanism is impaired in Pax2A220G/+ mice.


Assuntos
Doxorrubicina , Glomérulos Renais , Mutação de Sentido Incorreto , Fator de Transcrição PAX2 , Podócitos , Animais , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Glomérulos Renais/patologia , Glomérulos Renais/metabolismo , Doxorrubicina/toxicidade , Camundongos , Regeneração , Modelos Animais de Doenças , Proliferação de Células , Camundongos Endogâmicos C57BL , Fenótipo , Apoptose , Masculino , Nefropatias/genética , Nefropatias/patologia , Nefropatias/metabolismo , Nefropatias/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...